If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^3+3W^2-25W-75=0
We add all the numbers together, and all the variables
3W^2-25W=0
a = 3; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·3·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*3}=\frac{0}{6} =0 $$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*3}=\frac{50}{6} =8+1/3 $
| −9x−21=−20x−87 | | 6t^2+9t=–2 | | 2e+4=22 | | 0=3p-3p | | 6t2+9t=–2 | | 8x2=x–6 | | 8s2=s–6 | | 7=-2x2 | | K^2+6k^2-4k-24=0 | | 2u2-8u=0 | | (3x-8)=(4x-19) | | -.65p-5=0.35p | | 8(x-5)-8=31x-232 | | -0.75p-2=9.25p | | 84/3x+11=15 | | Q^2-3q^2-25q+75=0 | | 3(n+3)=-4n+30 | | 3(q^2-3q)=0 | | 12(3y)=64 | | q2–7q+7=0 | | X=100-(.2x) | | (9+d)+10=210 | | h(50)=-8(50)^2+60(50) | | p2+9=–9p | | p^2+9=–9p | | x=25.00-0.09x | | x+57=137+x | | 4w(w+3)=16 | | 5w2+2=9w | | -2u=-4u2 | | -9=-3v2 | | 3x+5+5x-20=180 |